CHANTELLE KO
  • Home
  • Bio
  • GLOBE
    • GLOBE Videos
    • GLOBE Gallery
    • Sensational World of Sensors
    • GLOBE Blog
  • TRAVIS
    • TRAVIS Videos
    • TRAVIS Blog
  • SUBCLASS
  • Other Academia
    • Soundscapes
    • Augmented Props
    • Sofra Ensemble
    • Music Tech Works
  • Resources
  • Contact

It's Alive!!!!

30/1/2019

0 Comments

 
Long story short, THIS WHOLE 3D CONDUCTIVE FILAMENT THING WORKS!!!!!!
File printed: Strip2_265mm.stl
I made several charts outlining the details for each strip and each possibility with the strings. Maybe when I’m done filling them out I’ll transfer them over to google drive so I can access them online. For now, I’m mostly just reporting on the main points in my blog posts.
 
When I printed my first I found out that it was two milimeters too long. So instead of printing it at 270mm long, it’s 265mm. It was printed with a brim instead of a raft, I thought raft was selected, but it wasn’t so that was my mistake. It stayed flat on the build plate, but when I tried to scrape it off, it was super duper stuck. Getting it off made it bend a bit at the edges. For next time, make sure that the side that is exposed to the fingers is not on the build plate, so that way it is the texture I like. The full fingerboard definitely won’t fit on this printer because of the edges.
 
Also, what might help is make little cylinder extrusions that fit into deeper holes in the fingerboard. May need to make the thickness of the strip even thinner.
 
After printing I tested different sizes of the strip in Cura. The longest that could fit from corner to corner was 268mm. I don’t think those 2 extra mm on length would affect the resistance that much.
 
When I tested with the volt meter, the numbers tend to start high when I first place the prongs on, they jump around for a bit, and then they settle back down. There were two settings where I could get a reading from the volt meter:
 
200K: Somewhere between 12.something to 22.something. It was just constantly fluctuating.
(100,000 x 12 = 1,200,000 – 2,200,000 )
 
20K:
End: fluctuates between 8-16
Mid: 4-6
Close: 2-4 (10,000 x 2 = 20,000 – 160,000)
 
When I tested with the Arduino I liked having both the data and ground connected to the strip, the resistor connected between the strip and ground, and power connected to the string. I am getting both a change in pressure and linear data. It also works if I connect the alligator clip to the ball of the string… a little something to think about when I am in the final stages of hooking up. When the sensor is at rest, it jitters like the softpots do. Everything is jitter-y no matter which resistor I include in the circuit too. I forgot to solder an extra wire coming out of the power in order to hook up the battery to the resistors, so that’s why there are a multitude of wires going on around the battery haha.


 
Since everything is so jittery use peak => [if $i1 > y then $i1 else y] => [scale x y 0. 1023.] Also the jitter at rest solution that I came up with before. 
 
Conclusions with this particular strip:
G Evah has a larger range than G Dom.
D Evah has a larger range than D Dom.
A Dom has a larger range than A Evah. => they are both made from Aluminum. What is it about their winding that makes one so much better than the other? 
E Pirastro Gold has a larger range than E Evah.
 
More consistency in resistors from the Evah Pirazzi Pack as a whole. If I chose Dominants, if 3.3k is not the first choice of resistor it is at least the second choice. Pirastro Gold E is the best with a 3.3k is the best. 

As for the header hole I decided to print this with my first approximation. If I kept the black casing around the swiss machine head, then the hole was too small in diameter. But I found the black casing to be peeling off anyways, so I picked it off. Without the casing, it fits, but the hole is slightly too short in length. And the largest part of the hole is a bit too large in diameter.
0 Comments



Leave a Reply.

    Welcome to the TRAVIS blog!

    ​If you would like to see a summary of my work, please click here.  

    This blog is where I post updates on TRAVIS I & II as I continue developing them.
    TRAVIS I is an augmented violin that uses two Softpot sensors on the fingerboard to control sound fx, and two FSR's to bang presets.
    ​
    My wired prototype, uses an Arduino Lilypad USB. It was made by myself, and under the supervision of Dr. Bob Pritchard. 

    The wireless version uses an Arduino MKR1000. There was a group of engineering students who collaborated with SUBCLASS. Their names are Jin Han, Esther Mutinda, Carol Fu, and Lily Shao. For their own capstone they are utilized the same MKR1000 for the RUBS (Responsive User Bodysuit).  They named their capstone, WiRED (Wireless RUBS Environment Development). I have been modifying their work for my own purposes, as well as collaborating by making pieces with RUBS. 
    Bob Pritchard continues the RUBS project with TASTE. 

    TRAVIS II is was made in collaboration with Lora Oehlberg and luthier, Aaron Pratte. 

    It has four touch sensors​ made from conductive 3D print PLA and a voltage running down the strings. It also has four round FSRs clamped to the body. 

    You can find a videos and performances here. 

    A summary of my wifi connection troubleshooting can be found here. 

    Archives

    May 2022
    July 2021
    August 2020
    May 2020
    April 2020
    February 2020
    December 2019
    October 2019
    August 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    August 2018
    July 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017

    Categories

    All

    RSS Feed

    Picture
    Picture
    Picture
Powered by Create your own unique website with customizable templates.
  • Home
  • Bio
  • GLOBE
    • GLOBE Videos
    • GLOBE Gallery
    • Sensational World of Sensors
    • GLOBE Blog
  • TRAVIS
    • TRAVIS Videos
    • TRAVIS Blog
  • SUBCLASS
  • Other Academia
    • Soundscapes
    • Augmented Props
    • Sofra Ensemble
    • Music Tech Works
  • Resources
  • Contact